
MATHEMATICS OF COMPUTATION 
VOLUME 53, NUMBER 188 
OCTOBER 1989, PAGES 743-750 

New Bound for the First Case of Fermat's Last Theorem 

By Jonathan W. Tanner and Samuel S. Wagstaff, Jr. 

Abstract. We present an improvement to Gunderson's function, which gives a lower 
bound for the exponent in a possible counterexample to the first case of Fermat's "Last 
Theorem," assuming that the generalized Wieferich criterion is valid for the first n 
prime bases. The new function increases beyond n = 29, unlike Gunderson's, and it 
increases more swiftly. Using the recent extension of the Wieferich criterion to n = 24 
by Granville and Monagan, the first case of Fermat's "Last Theorem" is proved for all 
prime exponents below 156,442,236,847,241,729. 

1. Introduction. The generalized Wieferich criterion states that if the first 
case of Fermat's "Last Theorem" (FLT1) does not hold for the prime exponent p, 
i.e., the equation xP + yP = zP has a solution where x, y, and z are integers not 
divisible by p, then, for certain numbers q, 

(1) qPd- = 1 (mod p2) 

This criterion has been proved [1] when q is one of the first 24 primes Pt = 2, P2 = 3, 
p3 = 5,..., and P24 = 89. Several authors have used the fact that the generalized 
Wieferich criterion has been proved for the first n primes to prove FLT1 for all 
prime exponents below a certain bound. The idea behind these proofs is that if 
FLT1 does not hold for p, then all integers q that are not divisible by any prime 
exceeding Pn are solutions to (1). However, (1) can have at most (p - 1)/2 positive 
solutions less than p2/2 [2], and, in fact, at most (p - 1)/2 pairs of relatively prime 
solutions (a,b) with 1 < a < x and 1 < b < y, where xy = p2/2 [3]; These 
constraints yield a contradiction unless p is sufficiently large. 

The approach just described requires a lower bound for Pn(x), the number of 
positive integers up to x divisible by no prime exceeding Pn, or for Pn (x, y), the 
number of pairs of relatively prime positive integers up to x and y, respectively, 
divisible by no prime exceeding Pn. Rosser [2] obtained a suitable lower bound for 
Pn (x), good for small n, and his student, Gunderson [3], proved a similar one for 

Pn (x, y). When x and y are chosen properly as functions of p, each of these lower 
bounds is a polynomial of degree n in log p whose leading coefficient (as a function 
of n) goes to zero swiftly. In each case, when n is small, there is a range of p 
for which the lower bound exceeds (p - 1)/2 and gives the desired contradiction, 
proving FLT1 for all primes p in that range. But for all sufficiently large n, the 
lower bound stays less than (p - 1)/2 for all p, which proves nothing. See [8] for a 
discussion of Gunderson's estimate. 
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D. H. and Emma Lehmer [4] used a better lower bound for Pn(x) when they 
proved FLT1 for p < 253, 747,889. We follow the Lehmers' method and obtain a 
better lower bound than Gunderson's for Pn (x, y). This lower bound is derived in 
Section 2. The implications for FLT1 are discussed in Section 3. 

2. Estimate of Pn(x, y). In this section we define functions Gn (x, y) for n > 1 
which are moderately easy to compute and which are lower bounds for Pn (x, y). 

Define Gn (x, y) inductively as follows. Let G1 (x, y) = log xl log 2+log y/ log 2-1. 
For each n, Gn (x, y) will be a polynomial in log x and logy of the form 

n n-i 

(2) Gn(x,,y) = g7U) logi xlogi y. 
i=O j=O 

Assuming Gn (x, y) has been defined, define 

n nlt/i 

Gn+l (x, y) = Gn(x, y) + E g 7) log Pn+ log p ) ij_n) + 1E 9,X,) Y) Gn+1 (BX+, Y) + Bj+ D% )4))logi y 23 i+ 1 log Pn+1 

log1063 Pn +1 / /log y _D(n) o 
+ E I3j+lgnl j 

i=O j=O ogn1/g, 

where Bn(X) = n= Bk (n)Xn-k is the nth Bernoulli polynomial, Bk is the kth 
Bernoulli number (Bo = 1, B1 =-1, B2 = 1, B3 = 0, B4 =-3, B5 = 0, etc.), 

and D (i'n) is either the maximum value Mk or minimum value mk of Bk(X) on the 

unit interval 0 < x < 1, according as gi) > 0 or g(7) < 0. Note that Gn+1 (x, y) has 
the form (2), with n replaced by n + 1. Indeed, substitution of the definition of the 
Bernoulli polynomials in the definition of Gn+1 (x, y) gives the following recursion 
formulas: 

=i i + E mj m+1-iP+ 

g)=(n+ g (n) + (m + 1\ 1m-i + g(n) Bm( logm + Pn+1 when i > O,j > 0, 
m=j-1 

(n+l) =(n)+Yng(n) logtm Pn+1 (B,+1 
goo goo0 + mO ++ (Bm+l - D(m,n) 

Em=O m+1 m+1 m=O 

+ E g0m m + 1(Bm+l-D(+ 
m=O 

(n+l) -(n) +njg(n) lgtm Pn+1 (Bm+l-D(mj n) 
- o m+ Bml1 Dm+ ) 

m=O 

+ E g(n)logmmPn+1 1j (m + 1) when 1 < i < n, 
m=.l-1 m+ 

(n+)= g0n) /((n + 1) log Pn+ 1), 
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(n+1) = g(n) + (n) lg Pn+1 (Bm+l -D(i m,n) 
gi0 =go + E gim m+1 /+ 

m=O 

+ E g(n)lom Pn+1 Bm+i (m+1 when 1<i<n, and 

m=i-1 

(n+1) = 9n) /((n + 1) log Pn+ ) 

The case n = 1 has goo =-1 and go) = go) = 1/log 2. 

We will prove by induction on n that Pn(x,y) > Gn(X,y) for n > 1, x > 1 and 

y > 1. For the base step, note that P1 (x, y) is the number of pairs of integers of the 
form (2a,1) or (1,2b) with 0 < a < [(logx)/(log2)] and 0 < b < [(logy)/(log2)]. 
Therefore, 

Pi(x,y) = ([log] 
1 -1 k[log 2 J J log 2 

> 2+ log 1 =G (x, y). 
log 2 log 2 

Now assume that Pn (x, y) > Gn (x, y) for some n > 1. Write p for Pn+1. By 
definition, Pn+ 1 (x, y) is the number of pairs of relatively prime integers (a, b) having 
no prime factor greater than p, with 1 < a < x and 1 < b < y. We may count these 

pairs as follows. There are Pn (x, y) pairs in which neither a nor b is divisible by p. 
There are Pn (x/p8, y) pairs (a, b) in which a is exactly divisible by p8. There are 

Pn(x, y/p8) pairs (a, b) in which b is exactly divisible by p8. Therefore, 

[log x/ log PI [log y/ log pI 

* Pn+ 1(zX,Y) = Pn (X, Y) + E Pn (x/ XY,) + Pn (zXYIP' ) 

8=1 s=1 

By the induction hypothesis, this quantity is greater than or equal to 

[log x/ log p] [log y/ log p] 

Gn (X,Y) + Gn (X/P' Y) + E Gn (zXYlp') 

s=1 s=1 

n n-i [log x/ log p] 

= Gn (X, g) +'in' E log Ps log3 y 
i=O j=O s=1 

n n-i [log y/ log p] 

+ E E gt(i) logi log x. 
i=O j=O s=1 P8 

By [5, Lemma on p. 345], 

_____ log z) -mk+1 ) ~~~ [log z/ log PI log k log z 
S 1ok Z- k Bk+l 1 ) Mk+ 1 > log Ps 

(3) 
k 

1 ( log p )= 

logkp ( log z) M+) > 
Bk+~~1 M+ 
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Therefore, 

nf- n-i Pn+i(x y) > Gn (log)+i () 9 Pn+1 Bj+j log p J,n) loglo y 

i= )j=O j+1+ l+ (log gPn + i 

which is the definition of Gn+1 (x, y). 

3. Implications for Fermat's Last Theorem. We computed the coeffi- 
cients of the polynomials Gn (x, y) defined in Section 2 for n < 50. We then 
computed the solution to Gn (p/IV'- p/IV') = (p - 1)/2, by iterating the mapping 
p -* 2Gn (p/v2-, p/IJV) + 1. We performed these computations first on a personal 
computer, and then with double precision on a CYBER 205 for more accuracy. In 
Table 1 below, we list the values of Mn and mn, defined in Section 2, used in our 
calculations. These values were computed using the formulas on page 538 of [6]. 
However, we corrected a tiny error in formulas (17) and (18) of that paper: the 
exponents of 3 and 5 should be -2k - 1 rather than -2k in these formulas and in 
the first inequality following (18). 

In Table 2, we give the coefficients of G24(x, x). Following earlier authors, we 
have used base 10 for logarithms. In Table 3, we list Gunderson's lower bound on 
a possible counterexample to FLT1 and our new bound R(n), which is the largest 
number x for which Gn(x/I/2, x/I/2) > (x - 1)/2. Let Q(n) be the least prime 
number greater than R(n). FLT1 is then true for all prime exponents below Q(n), 
assuming the generalized Wieferich criterion holds for the first n primes. In particu- 
lar, since the generalized Wieferich criterion has been proved up to P24 = 89, FLT1 
is now proved for all prime exponents below Q(24) = 156, 442, 236, 847, 241, 729. 

Each value of R(n) shown in Table 3 is larger than the corresponding value of 
Gunderson's function. In Gunderson's day, when the Wieferich criterion had been 
proved only up to the eleventh prime (or, some thought, up to the fourteenth), 
the advantage of a better approximation to Pn (x, y) was not as significant as it is 
today. Our function R(n) increases beyond n = 29, unlike Gunderson's function [8]. 
We hope this encourages further extension of the Wieferich criterion. We suspect, 
however, that our function may suffer the same fate as Gunderson's and peter out 
eventually because of the following weakness inherent in our iteration procedure. 
The lemma of [5], which we used to derive (3), must cover the worst case, which 
presumably occurs only rarely. We have not tried to compute the exact point of 
failure, because D. Coppersmith recently showed us a new method of computing 
lower bounds for Pn (x, y) that always increase with n. Using the Wieferich criterion 
up to P24, his method proves FL'1ii` for all primes up to about 7.568 x iO'7. 

It should be noted that an old result of Lenstra provides a lower bound for 
R(n) which increases monotonically. He proved [7] that if p is an odd prime, then 
there exists a prime q < 4 1n2 p for which (1) fails. It follows immediately that 
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TABLE 1 

Minima and maxima of Bernoulli polynomials on [0, 1]. 

n mn Mn 
1 -0.15000000000000000000 E+01 -0.50000000000000000000 E+00 
2 0.16666666666666666667 E+00 0.41666666666666666667 E+00 
3 -0.48112522430000000000 E-01 0.48112522430000000000 E-01 
4 -0.95833333333333333333 E-01 -0.33333333333333333333 E-01 
5 -0.24458190870000000000 E-01 0.24458190870000000000 E-01 
6 0.23809523809523809524 E-01 0.70684523809523809524 E-01 
7 -0.26065114260000000000 E-01 0.26065114260000000000 E-01 
8 -0.99739583333333333333 E-01 -0.33333333333333333333 E-01 
9 -0.47550561640000000000 E-01 0.47550561640000000000 E-01 

10 0.75757575757575757576 E-01 0.22712476325757575758 E+00 
11 -0.13249665844000000000 E+00 0.13249665844000000000 E+00 
12 -0.75921706873855311355 E+00 -0.25311355311355311355 E+00 
13 -0.52356641061000000000 E+00 0.52356641061000000000 E+00 
14 0.11666666666666666667 E+01 0.34998575846354166667 E+01 
15 -0.27850407419174720773 E+01 0.27850407419174720773 E+01 
16 -0.21276254152784160539 E+02 -0.70921568627450980392 E+01 
17 -0.19188487584572014681 E+02 0.19188487584572014681 E+02 
18 0.54971177944862155388 E+02 0.16491311443778207726 E+03 
19 -0.16622912456675811145 E+03 0.16622912456675811145 E+03 
20 -0.15873717180483268969 E+04 -0.52912424242424242424 E+03 
21 -0.17684658253063159639 E+04 0.17684658253063159639 E+04 
22 0.61921231884057971014 E+04 0.18576366612582966901 E+05 
23 -0.22666655909265818844 E+05 0.22666655909265818844 E+05 
24 -0.25974074901948887787 E+06 -0.86580253113553113553 E+05 
25 -0.34449186089429466637 E+06 0.34449186089429466637 E+06 
26 0.14255171666666666667 E+07 0.42765514575162778298 E+07 
27 -0.61257087042251506579 E+07 0.61257087042251506579 E+07 
28 -0.81894693000060605138 E+08 -0.27298231067816091954 E+08 
29 -0.12599480348174813897 E+09 0.12599480348174813897 E+09 
30 0.60158087390064236838 E+09 0.18047426205813954085 E+10 
31 -0.29680816595114507324 E+10 0.29680816595114507324 E+10 
32 -0.45348947294237387529 E+11 -0.15116315767092156863 E+11 
33 -0.79392600378647102296 E+11 0.79392600378647102296 E+11 
34 0.42961464306116666667 E+12 0.12888439291334862731 E+13 
35 -0.23931352922352727888 E+13 0.23931352922352727888 E+13 
36 -0.41134965614865936628 E+14 -0.13711655205088332772 E+14 
37 -0.80744275041701406077 E+14 0.80744275041701406077 E+14 
38 0.48833231897359316667 E+15 0.14649969569172264147 E+16 
39 -0.30310995949998174742 E+16 0.30310995949998174742 E+16 
40 -0.57889738025785104173 E+17 -0.19296579341940068149 E+17 
41 -0.12591698546830878159 E+18 0.12591698546830878159 E+18 
42 0.84169304757368261500 E+18 0.25250791427206650873 E+19 
43 -0.57602631907583269025 E+19 0.57602631907583269025 E+19 
44 -0.12101421556217378033 E+21 -0.40338071854059455413 E+20 
45 -0.28890015886661637002 E+21 0.28890015886661637002 E+21 
46 0.21150748638081991606 E+22 0.63452245914245373676 E+22 
47 -0.15821357120470909276 E+23 0.15821357120470909276 E+23 
48 -0.36259879566889491923 E+24 -0.12086626522296525935 E+24 
49 -0.94258671460125389549 E+24 0.94258671460125389549 E+24 
50 0.75008667460769643669 E+25 0.22502600238230879776 E+26 



748 JONATHAN W. TANNER AND SAMUEL S. WAGSTAFF, JR. 

TABLE 2 
Coefficients of the polynomial G24 (x, x). 

n Coefficient of Xn in G24(X, X) 
0 -0.11124693077293400420 E+05 
1 -0.19363548438737002094 E+05 
2 -0.17375140357104685401 E+05 
3 -0.10771895369339379062 E+05 
4 -0.51882790358553534694 E+04 
5 -0.20907991529685734580 E+04 
6 -0.70902615515628871565 E+03 
7 -0.22286316542789616349 E+03 
8 -0.55123529031930888302 E+02 
9 -0.15365746661965683662 E+02 

10 -0.24374081976518702390 E+01 
11 -0.72982679905736685353 E+00 
12 -0.47984527735836055517 E-01 
13 -0.23921139849329798596 E-01 
14 0.44997965855754343485 E-03 
15 -0.51977514439278889268 E-03 
16 0.43284207081650198488 E-04 
17 -0.70685578836264089938 E-05 
18 0.89402321136888100622 E-06 
19 -0.56052466000600451515 E-07 
20 0.85939038723613860659 E-08 
21 -0.23138055120705401572 E-09 
22 0.39150182529613663587 E-10 
23 -0.37681535318820797427 E-12 
24 0.67109909952638698046 E-13 

TABLE 3 - 

Old and new lower bounds for a possible counterexample to FLT1. 

n nlth Prime Gunderson's Bound New Bound R(n) 
2 3 93.1 131.1 
3 5 861.4 1392.4 
4 7 7616.1 13072.2 
5 11 52735.2 94815.6 
6 13 350357.5 661393.5 
7 17 2032170.2 4081068.2 
8 19 11360889.4 24522706.9 
9 23 57557706.7 135923041.4 

10 29 256482782.3 679635322.1 
11 31 1110061026.8 3349178854.4 
12 37 4343289919.3 15336498683.8 
13 41 16018986861.3 67731590890.3 
14 43 57441749341.4 295931100415.4 
15 47 194810995856.2 1252907293603.9 
16 53 611028198337.9 5065786519632.0 
17 59 1779859830918.2 19682144283255.1 
18 61 5026694771491.7 75886223273546.4 
19 67 13207844119604.0 282770978928089.1 
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TABLE 3 (continued) 

20 71 32905961806749.9 1033891266050714.6 
21 73 79066452863726.0 3755162741164996.1 
22 79 176236114699864.1 13262862527392256.9 
23 83 369783910563050.3 46102892590386280.7 
24 89 714591416091369.8 156442236847241649.8 
25 97 1242237613389766.7 515062466154238954.0 
26 101 1985337583473801.8 1674645737493287555.5 
27 103 2926704423622306.3 5419082591859180578.1 
28 107 3835841028759220.9 17329485401608772032.6 
29 109 4408660978137437.7 55163979858622168394.3 
30 113 4107554462428530.6 173642818878629237045.3 
31 127 2321) 92058339787.0 524859226635802191198.6 
32 131 268690071898783.2 1571770419526751987469.2 
33 137 4640623723046428548069.9 
34 139 13652745852383582733431.9 
35 149 39266115083304516886158.9 
36 151 112563302180710531159197.0 
37 157 318818792908136203807583.0 
38 163 892674241903000482296716.3 
39 167 2481895280814579774851979.7 
40 173 6826818305097123485543963.2 
41 179 18586018953742069863067495.0 
42 181 50461623282714716212095944.4 
43 191 134745590008715569795727433.3 
44 193 358879895908370471644356537.7 
45 197 950274143425938949741842917.6 
46 199 2509904603458487705005232870.0 
47 211 6511699273735784412415745299.5 
48 223 16615035813391291134156987180.0 
49 227 42185393245604823986455364248.0 
50 229 106875542151091718623981352256.0 
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