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New Bound for the First Case of Fermat’s Last Theorem

By Jonathan W. Tanner and Samuel S. Wagstaff, Jr.

Abstract. We present an improvement to Gunderson’s function, which gives a lower
bound for the exponent in a possible counterexample to the first case of Fermat’s “Last
Theorem,” assuming that the generalized Wieferich criterion is valid for the first n
prime bases. The new function increases beyond n = 29, unlike Gunderson’s, and it
increases more swiftly. Using the recent extension of the Wieferich criterion to n = 24
by Granville and Monagan, the first case of Fermat’s “Last Theorem” is proved for all
prime exponents below 156,442, 236, 847, 241, 729.

1. Introduction. The generalized Wieferich criterion states that if the first
case of Fermat’s “Last Theorem” (FLT1) does not hold for the prime exponent p,
i.e., the equation zP + y? = 2P has a solution where z,y, and 2 are integers not
divisible by p, then, for certain numbers q,

(1) ¢ l'=1 (mod p?).

This criterion has been proved [1] when q is one of the first 24 primes p; = 2, p; = 3,
p3 = 5,..., and pyq = 89. Several authors have used the fact that the generalized
Wieferich criterion has been proved for the first n primes to prove FLT1 for all
prime exponents below a certain bound. The idea behind these proofs is that if
FLT1 does not hold for p, then all integers ¢ that are not divisible by any prime
exceeding p, are solutions to (1). However, (1) can have at most (p — 1)/2 positive
solutions less than p?/2 [2], and, in fact, at most (p — 1)/2 pairs of relatively prime
solutions (a,b) with 1 < a < z and 1 < b < y, where zy = p?/2 [3]. These
constraints yield a contradiction unless p is sufficiently large.

The approach just described requires a lower bound for P,(z), the number of
positive integers up to z divisible by no prime exceeding p,, or for P,(z,y), the
number of pairs of relatively prime positive integers up to z and y, respectively,
divisible by no prime exceeding p,. Rosser [2] obtained a suitable lower bound for
P,(z), good for small n, and his student, Gunderson [3], proved a similar one for
P,(z,y). When z and y are chosen properly as functions of p, each of these lower
bounds is a polynomial of degree n in log p whose leading coefficient (as a function
of n) goes to zero swiftly. In each case, when n is small, there is a range of p
for which the lower bound exceeds (p — 1)/2 and gives the desired contradiction,
proving FLT1 for all primes p in that range. But for all sufficiently large n, the
lower bound stays less than (p — 1)/2 for all p, which proves nothing. See [8] for a
discussion of Gunderson’s estimate.
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D. H. and Emma Lehmer [4] used a better lower bound for P,(z) when they
proved FLT1 for p < 253,747,889. We follow the Lehmers’ method and obtain a
better lower bound than Gunderson’s for P,(z,y). This lower bound is derived in
Section 2. The implications for FLT1 are discussed in Section 3.

2. Estimate of P,(z,y). In this section we define functions Gy (z,y) forn > 1
which are moderately easy to compute and which are lower bounds for P,(z,y).

Define G, (z, y) inductively as follows. Let G1(z,y) = log z/ log 2+log y/log 2—1.
For each n, G (z,y) will be a polynomial in log z and logy of the form

n n—1i

(2) Gu(z,9) =D o log' zlog’ y.

1=0 5=0

Assuming G (z,y) has been defined, define

—1
log® log z
Grn+1(2,y) = Gnl(z,9) +ZZ ) 1og' Pass (Bi+1 ( g ) ,(ljln)) log’ y

=0 =0 i1+1 log pn+1
+ inzl (n) lOgJ 108" Pn+1 B. logy D(t,] n) logia:
S i1 U7 logpnsn ) I ’

where Bp(X) = Y p_o Br(3) X"k i is the nth Bernoulli polynomlal By is the kth
Bernoulli number (By =1, B; = 2, By = 6, B3 =0, By = —30, Bs =0, etc.),
and D,(ci’j ") is either the maximum value M, or minimum value my of B(z) on the
unit interval 0 < z < 1, according as gg') >0or gg?) < 0. Note that Gp41(z,y) has
the form (2), with n replaced by n + 1. Indeed, substitution of the definition of the
Bernoulli polynomials in the definition of Gp41(z,y) gives the following recursion
formulas: ‘

-7
Bpyi—i (m+1
=g+ S oy Bt (M) pogn
m=1—1

n—1

Bpti—j (m+1 j . .
3 r’nn:-l1]< ) >1Og i pus1 wheni> 0,5 >0,
m=5—-1

log™
9(()3+1)=9(()n) Z (n) g Pn+1(Bm - Dgn_;(;,n))

log™
+ Z (n) g pn+1 (Bm 1= '(7?-:7; n)),

m=0

log™ p g
o =gy + > 9o —e—PL (B = D™
m—O

() log™ ™ ppi1 m+1 .
+ Z ———Bm+1_j< . when 1 <j <n,
g1 m+1 ]

g((Jn:-i-lz gOn)/((n + 1) log pn+l)»
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gl(n+1) (n) Z (n)log p"“(Bm I_D'(:lrl,n))

1
" Z (n) Ogm +p1"..+._1 Bpt1—i (m :- 1) when 1 <7 <n, and

m=i—1

gt = gl /(n+ 1) log ppy1).

The case n =1 has g(():,) =-1and 910) = g((,l) =1/log?2.

We will prove by induction on n that P,(z,y) > Gn(z,y) forn > 1,z > 1 and
y > 1. For the base step, note that P (z,y) is the number of pairs of integers of the
form (2%,1) or (1,2%) with 0 < a < [(logz)/(log2)] and 0 < b < [(logy)/(log 2)].

Therefore,
_ [ |logz logy
rie = ([rogz] +2) + ([es] =) -

logz logy
> 427 1= .
~ log2  log2 1=Giz.y)

Now assume that P,(z,y) > Gn(z,y) for some n > 1. Write p for p,41. By
definition, P, 11 (z,y) is the number of pairs of relatively prime integers (a, b) having
no prime factor greater than p, with 1 <a <z and 1 < b < y. We may count these
pairs as follows. There are P,(z,y) pairs in which neither a nor b is divisible by p.
There are P,(z/p°, y) pairs (a,b) in which a is exactly divisible by p°®. There are
P, (z,y/p®) pairs (a,b) in which b is exactly divisible by p°. Therefore,

[log z/ log p] [log y/ log p]
Posi(z,y) =Pa(z,y)+ Y,  Palz/p9)+ Y.  Palz,y/p").
s=1 : s=1

By the induction hypothesis, this quantity is greater than or eqﬁal to

[log z/ log p] (log y/ log ]

Gu(z,9)+ Y, Galz/p9)+ Y. Gnlz,y/p°)
s=1 s=1
n n—i [log z/ log p)

=Gawn) + D0 D log' log'y

1=0 5=0 s=1
n n—i (log y/ log p)

+ Z Z g(") Z logJ log z.
=0 7=0 s=1
By [5, Lemma on p. 345],

log'c D log 2 llog 2/ log 7] k 2
_ > log® =
11 (Bk+l <logp) mk+1) > ) log

(3)
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Therefore,

lo log :
Poii1(z,y) 2 Gn(z,y) +Ezg(n) ' prs (Bi+1 <___g ) Dl(:”l"))log’y

e i+ 1 log pn+1
+Zn:§:l (n) log? log" pns1 (5 logy _ DI ) logt 2
=™ e\ logparr ) O ’

which is the definition of Gp41(z,y).

3. Implications for Fermat’s Last Theorem. We computed the coeffi-
cients of the polynomials G,(z,y) defined in Section 2 for n < 50. We then
computed the solution to G, (p/v/2,p/v2) = (p — 1)/2, by iterating the mapping
p — 2Gn(p/ V2, o/ \/5) + 1. We performed these computations first on a personal
computer, and then with double precision on a CYBER 205 for more accuracy. In
Table 1 below, we list the values of M,, and m,,, defined in Section 2, used in our
calculations. These values were computed using the formulas on page 538 of [6].
However, we corrected a tiny error in formulas (17) and (18) of that paper: the
exponents of 3 and 5 should be —2k — 1 rather than —2k in these formulas and in
the first inequality following (18).

In Table 2, we give the coefficients of Ga4(z,z). Following earlier authors, we
have used base 10 for logarithms. In Table 3, we list Gunderson’s lower bound on
a possible counterexample to FLT1 and our new bound R(n), which is the largest
number z for which G, (z/v2,z/v2) > (z — 1)/2. Let Q(n) be the least prime
number greater than R(n). FLT1 is then true for all prime exponents below Q(n),
assuming the generalized Wieferich criterion holds for the first n primes. In particu-
lar, since the generalized Wieferich criterion has been proved up to pa4 = 89, FLT1
is now proved for all prime exponents below Q(24) = 156,442, 236, 847, 241, 729.

Each value of R(n) shown in Table 3 is larger than the corresponding value of
Gunderson’s function. In Gunderson’s day, when the Wieferich criterion had been
proved only up to the eleventh prime (or, some thought, up to the fourteenth),
the advantage of a better approximation to P,(z,y) was not as significant as it is
today. Our function R(n) increases beyond n = 29, unlike Gunderson’s function [8].
We hope this encourages further extension of the Wieferich criterion. We suspect,
however, that our function may suffer the same fate as Gunderson’s and peter out
eventually because of the following weakness inherent in our iteration procedure.
The lemma of [5], which we used to derive (3), must cover the worst case, which
presumably occurs only rarely. We have not tried to compute the exact point of
failure, because D. Coppersmith recently showed us a new method of computing
lower bounds for P, (z, y) that alwa,ys increase with n. Using the Wieferich criterion
up to paa, his method proves FLZ'1 for all primes up to about 7.568 x 1017.

It should be noted that an old result of Lenstra provides a lower bound for
R(n) which increases monotonically. He proved [7] that if p is an odd prime, then
there exists a prime ¢ < 41n®p for which (1) fails. It follows immediately that

R(n) > exp(y/pa/2).
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TABLE 1
Minima and mazima of Bernoulli polynomials on [0,1].

Mp

—0.15000000000000000000 E401

0.16666666666666666667 E+400
—0.48112522430000000000 E—01
—0.95833333333333333333 E—01
—0.24458190870000000000 E—01

0.23809523809523809524 E—01
—0.26065114260000000000 E—01
—0.99739583333333333333 E-01
—0.47550561640000000000 E—01

0.75757575757575757576 E~01
—0.13249665844000000000 E+00
—0.75921706873855311355 E+4-00
—0.52356641061000000000 £4-00

0.11666666666666666667 E401
—0.27850407419174720773 E401
—0.21276254152784160539 E+402
—0.19188487584572014681 E+02

0.54971177944862155388 E+02
—0.16622912456675811145 E+4-03
—0.15873717180483268969 E+04
—0.17684658253063159639 E+04

0.61921231884057971014 E+04
—0.22666655909265818844 E+05
—0.25974074901948887787 E+06
—0.34449186089429466637 E4-06

0.14255171666666666667 E+4-07
—0.61257087042251506579 E+4-07
—0.81894693000060605138 E+08
—0.12599480348174813897 E+09

0.60158087390064236838 E+09
—0.29680816595114507324 E+10
—0.45348947294237387529 E+11
—0.79392600378647102296 E+11

0.42961464306116666667 E+12
—0.23931352922352727888 E+13
—0.41134965614865936628 E+14
—0.80744275041701406077 E+14

0.48833231897359316667 E+15
—0.30310995949998174742 E+16
—0.57889738025785104173 E+4+17
—0.12591698546830878159 E+18

0.84169304757368261500 E+18
—0.57602631907583269025 E419
—0.12101421556217378033 E+21
—0.28890015886661637002 E+21

0.21150748638081991606 E+-22
—0.15821357120470909276 E+23
—0.36259879566889491923 E+24
—0.94258671460125389549 E+24

0.75008667460769643669 E+25

My
—0.50000000000000000000 E+00
0.41666666666666666667 E+00
0.48112522430000000000 E—01
—0.33333333333333333333 E-01
0.24458190870000000000 E—01
0.70684523809523809524 E—01
0.26065114260000000000 E—01
—0.33333333333333333333 E-01
0.47550561640000000000 E—01
0.22712476325757575758 E+00
0.13249665844000000000 E+4-00
—0.25311355311355311355 E+00
0.52356641061000000000 E+00
0.34998575846354166667 E+01
0.27850407419174720773 E4+01
—0.70921568627450980392 E+01
0.19188487584572014681 E+4-02
0.16491311443778207726 E+03
0.16622912456675811145 E+03
—0.52912424242424242424 E+03
0.17684658253063159639 E+4-04
0.18576366612582966901 E+05
0.22666655909265818844 E+-05
—0.86580253113553113553 E+4-05
0.34449186089429466637 E+406
0.42765514575162778298 E+07
0.61257087042251506579 E+407
—0.27298231067816091954 E+08
0.12599480348174813897 E+09
0.18047426205813954085 E+10
0.29680816595114507324 E+10
—0.15116315767092156863 E+11
0.79392600378647102296 E+11
0.12888439291334862731 E+13
0.23931352922352727888 E+13
—0.13711655205088332772 E+14
0.80744275041701406077 E+14
0.14649969569172264147 E+16
0.30310995949998174742 E+16
—0.19296579341940068149 E+17
0.12591698546830878159 E+18
0.25250791427206650873 E+19
0.57602631907583269025 E+19
—0.40338071854059455413 E+20
0.28890015886661637002 E+421
0.63452245914245373676 E+22
0.15821357120470909276 E+23
—0.12086626522296525935 E+24
0.94258671460125389549 E+24
0.22502600238230879776 E+26
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TABLE 2

Coefficients of the polynomial Gas(z, ).

©COoO IR WN=OS

Coefficient of 2" in Gay(z, )
—0.11124693077293400420 E+05
—0.19363548438737002094 E+05
—0.17375140357104685401 E+05
—0.10771895369339379062 E+05
—0.51882790358553534694 E+04
—0.20907991529685734580 E+04
—0.70902615515628871565 E+03
—0.22286316542789616349 E+03
—0.55123529031930888302 E+02
—0.15365746661965683662 E+02
—0.24374081976518702390 E+01
—0.72982679905736685353 E+00
—0.47984527735836055517 E—01
—0.23921139849329798596 E—01

0.44997965855754343485 E—03
—0.51977514439278889268 E—03
0.43284207081650198488 E—04
—0.70685578836264089938 E—05
0.89402321136888100622 E—06
—0.56052466000600451515 E~07
0.85939038723613860659 E—08
—0.23138055120705401572 E—09
0.39150182529613663587 E—10
—0.37681535318820797427 E—12
0.67109909952638698046 E—13

TABLE 3

Old and new lower bounds for a possible counterezample to FLT1.

nt* Prime
3

5

7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67

Gunderson’s Bound

93.1

861.4

7616.1
52735.2
350357.5
2032170.2
11360889.4
57557706.7
256482782.3
1110061026.8
4343289919.3
16018986861.3
57441749341.4

194810995856.2
611028198337.9

1779859830918.2
5026694771491.7
13207844119604.0

New Bound R(n)
131.1

1392.4

13072.2

94815.6

661393.5
4081068.2
24522706.9
135923041.4
679635322.1
3349178854.4
15336498683.8
67731590890.3
295931100415.4
1252907293603.9
5065786519632.0
19682144283255.1
75886223273546.4
282770978928089.1
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20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

71

73

79

83

89

97
101
103
107
109
113
127
131
137
139
149
151
157
163
167
173
179
181
191
193
197
199
211
223
227
229

TABLE 3 (continued)

32905961806749.9
79066452863726.0
176236114699864.1
369783910563050.3
714591416091369.8
1242237613389766.7
1985337583473801.8
2926704423622306.3
3835841028759220.9
4408660978137437.7
4107554462428530.6
2321192058339787.0
268690071898783.2

1033891266050714.6
3755162741164996.1
13262862527392256.9
46102892590386280.7
156442236847241649.8
515062466154238954.0
1674645737493287555.5
5419082591859180578.1
17329485401608772032.6
55163979858622168394.3
173642818878629237045.3
524859226635802191198.6
1571770419526751987469.2
4640623723046428548069.9
13652745852383582733431.9
39266115083304516886158.9
112563302180710531159197.0
318818792908136203807583.0
892674241903000482296716.3
2481895280814579774851979.7
6826818305097123485543963.2
18586018953742069863067495.0
50461623282714716212095944.4
134745590008715569795727433.3
358879895908370471644356537.7
950274143425938949741842917.6
2509904603458487705005232870.0
6511699273735784412415745299.5
16615035813391291134156987180.0
42185393245604823986455364248.0
106875542151091718623981352256.0
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